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This paper deals with an experimental and numerical study of the dynamics of
an underwater explosion and its associated fluid–structure interaction. Experimental
studies of the complex fluid–structure interaction phenomena were carried out in a
specially designed test pond. The pond is equipped with a high-speed camera and
pressure and displacement sensors. The high-speed camera was used to capture the
expansion and collapse of the gas bubble created by the explosion. Several different
structures were used in the experiments, including both rigid and resilient plates of
circular shape. The deformation of the plate was measured with a non-contact laser
telemetry device. The numerical simulations of the explosion bubble interacting with
a submerged resilient structure were performed using a three-dimensional bubble
dynamics code in conjunction with a structural code. The bubble code is based on
the boundary-element method (BEM) and has been coupled to a structural finite-
element code (PAM-CRASHTM). The experimental results were compared against
the numerical results for different bubble–structure configurations and orientations.
Several physical phenomena that have been observed, such as bubble jetting and
bubble migration towards the structure are discussed.

1. Introduction
The underwater detonation of an explosive can have serious effects on a nearby

structure (such as a ship or submarine). The same amount of explosive can cause
greater damage underwater than it would have caused in air, because water is much
less compressible than air. The physics of an underwater explosion are complex and
many phenomena can be encountered from combustion and shock waves to structural
mechanics. The response of the structure is determined by a number of factors, such
as the density, strength and thickness of its constituent material.

† Author to whom correspondence should be addressed.
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Just after the detonation, a shock wave and an expanding high-pressure gas bubble
will appear. This shock wave moves at a very high speed and will generate a very high
pressure. When it hits the structure, it gives rise to the first damaging mechanism.
While the pressure loading due to the shock impact can be very high, the duration is
usually very short compared with the dynamics of the bubble. The explosive products
form a high-pressure gas bubble and this bubble expands owing to the high pressure.
However, inertia causes the bubble to overexpand and the pressure inside the bubble
becomes lower than the surrounding reference pressure; it then stops expanding (for
example, the maximum bubble diameter in a typical explosion of a torpedo of 500 kg
TNT is of the order of 10 to 20 m). The hydrostatic pressure is now larger than
the pressure inside the bubble and a collapse phase will follow. If the frequency of
the bubble ‘matches’ the eigenfrequency of the structure, it can lead to the so-called
‘whipping’ effect which can potentially constitute the second damaging mechanism. In
most cases, in the collapse phase, the attraction of the bubble towards the structure
(Bjerknes effect), the influence of gravity and inertia will cause a high-speed water jet
to develop. The jet traverses the bubble and impacts on the other side of the bubble
surface. This jet can be directed towards the structure and is then associated with
a third damaging mechanism. After jet impact, the bubble will become toroidal in
shape and will continue to contract. Not long after the jet impact, the bubble reaches
its minimum volume and a high-pressure peak can be observed. The bubble will then
rebound again for a second cycle. It will have lost much of its energy and the second
cycle is less ‘violent’.

In the last few decades, the boundary integral method (BEM) has been widely
applied to simulate bubble dynamics problems. Bubbles of all sizes have been
simulated, from large explosion bubbles to small cavitation bubbles. The BEM reduces
the dimension of the problem by one, since only the boundaries of the problem need
to be meshed, with the fluid domain remaining mesh-free. Another advantage of the
BEM is that the mesh can follow the deformations of both bubble and structure well,
even if the bubble becomes highly distorted. The employment of the BEM in bubble
dynamics can be seen in Blake & Gibson (1981) who studied the growth and collapse
of a vapour cavitation near a free surface. Their numerical results of the bubble shape
as it evolved matched well with the experiments, which suggests that BEM can be a
valid approach to capturing the complex features of bubble dynamics including the
formation of a water jet. Blake & Gibson (1987) studied cavitation bubbles near solid
boundaries. They introduced a criterion to calculate the time-step size for bubble
dynamics problems by simply allowing the potential to change by only a prescribed
amount anywhere on the mesh between two time steps. Other works employing the
BEM to study bubble dynamics include Oguz & Prosperetti (1990)’s investigation of
the entrained bubbles produced by the impact of drops on the surface of the same
liquid. Lundgren & Mansour (1991) used the BEM to study initial spherical and
toroidal bubbles rising in a gravity field. The three-dimensional motion of a bubble
close to a fixed rigid structure was simulated by Harris (1992); this study was limited
to simulations prior to jet impact. Zhang, Duncan & Chahine (1993) simulated an
initially spherical cavity bubble located near a rigid wall until its toroidal phase. In
their computation, a layer was defined to separate the water jet and the surrounding
domain during the toroidal bubble phase. This layer acts as a vorticity sheet and
moves with the flow. The layer deforms as much, if not much more than the bubble
surface, which can make the tracking very challenging. Zhang & Duncan (1994)
extended their study to cover gas bubbles. In a parallel development, Wang et al.
(1996) studied the nonlinear interaction between a gas bubble and a free surface.
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They employed a so-called surgical-cut to convert the originally simply-connected
bubble to a toroidal shape after the jet impact. Instead of adding a vortex sheet at
the impact area, a vortex ring was placed inside the bubble to account for the double
connectivity of the bubble. There is no longer the need for meticulously tracking the
vorticity sheet as in Zhang et al. (1993); we just ensure that the vortex ring stays
inside the toroid as the bubble evolves. However, their simulations were limited to
axisymmetrical configurations. Tong (1997) numerically investigated the interaction
of transient cavities in fluid flows with rigid boundaries, using the image method; the
boundary is therefore not discretized and is infinite and flat. Zhang et al. (1998) did a
three-dimensional computation to study the dynamics of bubbles and a free surface.
In their work, several configurations of two bubbles were calculated to understand
better the underlying flow physics. Zhang et al. (2001) extended the surgical-cut and
vortex ring technique to general three-dimensional toroidal bubble problems, looking
specifically at the issues of the physical impact and its relation to the numerical
stability of the BEM code. Other methods, such as the finite-volume formulation of
Popinet & Zaleski (2002) were also used to simulate oscillating bubbles near a solid
surface.

The work of Cole (1948) still contains much useful data concerning experimental
and simple theoretical modelling of underwater explosions. In recent decades, with
the advances in numerical techniques and experimental equipment such as high-speed
cameras, several attempts to capture the behaviour of bubble dynamics have been
made. Though most of these works were numerical, some experimental data do exist.
Tomita, Shima & Takahashi (1983) studied the collapse of a small gas bubble attached
to a solid wall induced by a shock wave. At about the same time, Shima, Takayama &
Tomita (1984) experimentally investigated, in fair detail, the collapse of a single spark-
generated cavitation bubble near a solid wall with different stand-off configurations.
Shima et al. (1989) studied the growth and collapse of a bubble near a composite
surface consisting of two viscoelastic materials. Tomita, Shima & Takahashi (1991)
experimented on the behaviour of a bubble near a rigid wall (with two kinds of
axi-symmetrical shape). Tipton, Steinberg & Tomita (1992) made an experimental
and numerical study on an expanding and collapsing bubble in the vicinity of a rigid
wall. Their bubbles were very small (a few mm) and generated by electric sparks.
These sparks create difficulties in estimating the initial size, shape and energy of the
bubble. According to Tipton et al., if a small amount of high explosive were used
(as in our experiments), the geometry, density and initial energy of the bubble could
be specified much better. They also made some comparisons of their experimental
data to computations. Tomita et al. (1994) investigated the dynamics of motion of
a laser-generated bubble in liquid nitrogen using high-speed photography. Tomita
& Shima (1994) experimentally studied the interactions between a bubble and a
boundary, bubble–bubble interaction and shock wave–bubble interaction. Chahine
et al. (1995) conducted some tests with spark-generated bubbles. Finally, Brett,
Yiannakopoalos & Schaaf (2000) did some experiments to measure the deformation
of submerged cylinders subject to loading from a nearby explosion. All these above
mentioned experiments are confined to rather small bubbles and not large explosion
bubbles, with the possible exception of Brett et al. (2000). Unfortunately, for the
latter, their objective and emphasis is on the final structural deformation and not on
the bubble dynamics per se, so no direct measurements concerning bubble properties
are reported.

In the present study, the intention is to investigate experimentally and numerically
the interaction (and main physics) between an underwater explosion bubble and a



390 E. Klaseboer and others

nearby submerged structure, both rigid and resilient. To our knowledge, this is one
of the first times that results concerning bubble dynamics and structural deformation
in a underwater explosion test have been described and made available in the
open literature. Experiments were performed at the CTSN (Centre Technique des
Systèmes Navals) test pond, specially designed for detonation trials, in Toulon, France.
Several charge weights and stand-off distances were employed. The single explosive
composition used is Hexocire (RDX + wax). More than 18 tests were performed,
among them free-field explosions and explosions near horizontal and vertical plates. In
our numerical study of the bubble dynamics, the response of the structure to the shock
wave is not considered. This is justified because the duration of the shock is usually
very short and the inertia of the structure is too large for it to respond significantly.
The water surrounding the bubble and structure is assumed to be incompressible
and irrotational and the BEM is applied. When the bubble forms a toroidal shape,
after jet impact, the rotational part of the flow is represented by a vortex ring of
known strength which is located inside the bubble, but the remaining flow is still
irrotational, similar to numerous previous studies. An elastic–plastic deformation
model is used for the structure, which is calculated by a nonlinear finite-element
method (FEM) structural solver (PAM-CRASHTM). In order to obtain the dynamic
interaction between bubble and structure, the computation of the bubble dynamics
must be coupled with the simulation of the structural deformation. It is done by
exchanging information (position and forces) between the BEM solver and the FEM
solver on the nodes of the structure (the so-called wetted surface). Comparisons, both
qualitatively and quantitatively between the results of the experiments and numerics
are made.

2. Experimental set-up
Experiments with reasonably small test charges near submerged resilient structures

were carried out by the Centre Technique des Systèmes Navals in France in a specially
designed test pond. The pond has a truncated cone shape with a mean radius of 9 m
at the top surface, a depth (Hpond) of 7 m and a useful mean radius (Rpond) of 7.5 m
at mid-depth. A high-speed camera (1000 images s−1) is used to record the explosion
bubble phenomena. A special device consisting of mirrors and tubes has been used to
protect the camera from the hazardous effects of the explosion (the camera is placed
above the waterline). All explosions were performed at a depth of 3.5 m (the explosive
device is placed roughly at the middle of the pond). The sidewalls of the pond
have steps cut in and are covered with sacks of railway track ballast, held in place by
a wire netting framework. This design effectively diffracts the shock waves induced by
the explosion and also absorbs the bulk of the explosion energy. The maximum bubble
radius for an explosive of 55 g is Rm = 0.54 m. The radius of the pond compared to the
radius of the bubble is now: Rm/Rpond =0.072. Half the depth of the pond compared
to the radius of the bubble is 2Rm/Hpond = 0.15. These values are sufficient to ensure
that the boundaries and the free surface of the pond do not greatly influence the
bubbles’ behaviour. The single explosive composition used in these experiments is
Hexocire (RDX + wax), with charge weights of 10 g, 35 g and 55 g. The charge is
detonated using an exploding bridgewire detonator (without primary explosive) and
a high-energy unit. This is a device which provides the detonator with a very high
voltage pulse from the main power supply. Tourmaline piezoelectric pressure sensors
are used to measure the time history of the pressure in the fluid and on the plate. The
small and robust tourmaline crystal is able to withstand high dynamics pressures of
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more than 100 MPa. The deflection of the resilient plate is measured as a function of
time using a non-contact laser telemeter device installed on the supporting structure
called MEDUSE. MEDUSE is a rigid structure weighing up to two tons. It has been
designed to study the fluid–structure interaction caused by an underwater explosion
near an air-backed structure. MEDUSE can be lifted out of the water to perform
the necessary arrangements before the start of an experiment. During the experiment,
MEDUSE is suspended on buoys. The inertia of MEDUSE is such that for charges
lesser than 200 g, it can be considered as fixed in space. Direct sunlight was also used
as a light source in the experiments.

3. Theory and numerical modelling
3.1. Introduction

The numerical calculations can be split into two parts: the fluid part and the structural
part. The fluid part is carried out using the boundary integral method. Special care
must be taken after the jet impact, induced by the collapsing bubble, since the fluid
domain then becomes doubly connected; a vortex ring is placed inside the bubble to
account for this. The structural part is solved using the finite-element solver PAM-
CRASHTM. A ‘loose’ coupling between the two codes has been made; information
concerning displacements of the structure are passed on from the structural code to
the fluid code and forces (deduced from the pressure loading on the structure) are
passed on from the fluid code to the structural code. A controlling interface code
decides which code has to be called to do the appropriate calculations and making
the relevant results available as input to the other code. Time steps and structural
meshes can be different for the two codes.

3.2. Boundary-element method (BEM) for the fluid part

The assumption that the fluid is inviscid and incompressible and the induced motion
is irrotational indicates that there exists a potential function φ(x, y, z) in the fluid
domain which may be bounded by bubbles and/or structures. For an explosion
bubble of relatively large dimensions, inertia is the main governing parameter as
opposed to the viscous effect and hence the absence of viscosity in our computation
is reckoned not to affect significantly the primary flow physics. The problem under
consideration is an external problem (i.e. the fluid extends to infinity). The velocity
vector can be derived from this potential as: u = ∇φ. These assumptions are clearly
not valid just after the detonation (shock waves are not described by potential theory).
However, the effects of the shock wave are short-lived and do disappear relatively
quickly and probably do not significantly influence the solution associated with the
bubble dynamics where the potential theory is assumed to be valid. It is noted in
Cole (1948) that the event of shock dynamics occurs in the order of milliseconds after
the detonation, while the duration of the flow physics of the bubble are measured in
seconds. A Cartesian coordinate system Oxyz is used with the z-axis pointing in the
opposite direction to the gravity acceleration vector. Green’s second identity reads

c(x)φ(x) +

∫
s

[
φ( y)

∂G(x, y)
∂n( y)

− ∂φ( y)
∂n( y)

G(x, y)
]

ds( y) = 0, (1)

where x is a vector pointing to a control point situated on the boundary S; y is a
vector pointing to an integration point; G(x, y) = 1/|x − y| is the free space Green’s
function; c(x) is a geometrical parameter associated with the solid angle, and n( y)
is the unit normal vector pointing out of the fluid domain. The normal derivative is
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defined as: ∂/∂n = n · ∇. The integration in (1) has to be performed on all surfaces
(indicated by S): on the bubble and the structure. Thus, only meshes on the surfaces
of the bubble and structure are required. A non-condensable gas that obeys the
adiabatic gas law (vapour pressure is ignored) is assumed to form the contents of the
bubble:

P = P0

(
V0

V

)λ

, (2)

where V0 and P0 are the initial volume and pressure, respectively, of the non-
condensable gas. The constant ratio of specific heats is indicated by λ, which is
equal to 1.25 for the gaseous explosion products resulting from an TNT explosion
(see Cole 1948). It is reckoned that the overall bubble dynamics are sufficiently
fast and the bubble size sufficiently large to prevent significant exchange of heat
from the bubble to the surrounding fluid and hence the adiabatic condition (2) is
imposed. We may note too that the response time of the compressible air within
the bubble is much smaller when compared to that of the external fluid. Therefore,
the flow inside the bubble can be considered to be in equilibrium. All variables are
then converted to dimensionless variables with respect to the length scale Rm (the
Rayleigh bubble radius, corresponding to the maximum radius of a similar spherical
symmetrical bubble having the same initial size and pressure placed in an infinite
fluid without gravity), the reference pressure P∞ and the time scale Rm

√
ρ/P∞. The

reference pressure P∞ is defined as the pressure at infinity on the Oxy coordinate
plane located at the initial bubble centre. With this time scale, the dimensionless
time unit ‘1’ represents roughly half the oscillation time of a bubble (from initial
state to maximum bubble size). The dimensionless unsteady Bernoulli equations are,
neglecting the surface tension on the bubble–water interface:

∂φ

∂t
= 1 − 1

2
|u|2 − δ2z − P on the wetted surface of the structure, (3)

∂φ

∂t
= 1 − 1

2
|u|2 − δ2z − ε

(
V0

V

)λ

on the bubble surface, (4)

with δ =
√

ρgRm/P∞ being the buoyancy parameter and ε = P0/P∞ being the strength
parameter as denoted by the ratio of the initial bubble pressure and ambient
pressure. The parameters ε and Rm (dimensional) are obtained from empirical
relationships, based on field trials/experiments collected over the years, requiring only
the TNT equivalent weight and the initial depth of the explosive, see for example
Rungsiyaphornrat et al. (2003). These relationships were determined for large-scale
underwater explosions. One such a relation can be found in Cole (1948), relating the
initial gas pressure to the weight of the charge (W ). In SI units this relationship reads:

P0 = 1.39 105(W/V0)
λ. (5)

Another empirical relationship follows from the fact that the maximum volume of
the bubble is proportional to the charge weight and inversely proportional to the
hydrostatic pressure (depending linearly on the charge depth Z); this will lead to the
following relationship for the maximum bubble radius:

Rm = 3.38

(
W

Z + 10

)1/3

. (6)
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The bubble is assumed to be spherical at the beginning of the numerical calculations
and its radius is set to R0, (obtained from V0). The three parameters R0, λ and ε can
not be chosen independently, but are related by:

ε

λ − 1

(
R3λ

0 − R3
0

)
= −1 + R3

0 . (7)

Equation (7) can be deduced from the Rayleigh–Plesset equation for spherical
oscillating bubbles. If (7) is not satisfied, the maximum dimensionless bubble radius
will not be 1.0. The surface of the bubble and structure is discretized into a series
of three-dimensional linear triangular elements. The bubble consists of 362 nodes
and 720 elements using an icosahedron as explained in Wang (1998). The mesh for
the solid has a comparable number of nodes and elements (depending on the case).
The integrals in (1) are carried out for each triangle. Linear interpolation functions
are used for the coordinates, the potential and normal velocity. Each triangle is
transformed to a unit triangle and a 7-node Gaussian integration formula is used to
calculate the integrals. The resulting contributions are added up for each node which
gives rise to a system of linear equations relating ∂φ/∂n and φ at all nodes of the
mesh. For more details on the numerical integration, we can refer to the work by
Wang (1998). On the bubble surface, the positions and the potentials of each node
can be calculated with the positions and potentials at the previous time step and (4).
The positions of each node on the mesh are now updated using a particle-tracing
Lagrangian scheme with Eulerian time stepping:

xt+δt = xt + δt uEMT. (8)

The nodes are moving with a velocity uEMT, which is an optimized velocity in order
to keep the mesh regular (see § 3.3 for more details). Note that this velocity is not the
material velocity in general. The potential can be updated in a similar way, using the
Bernoulli equation:

φt+δt = φt + δt

(
1 − 1

2
|u|2 − δ2z − ε

(
V0

V

)λ

+ uEMT · u

)
. (9)

To maintain numerical stability, the time-step size δt is chosen in accordance with
the following criterion, based on the Bernoulli equation (fairly similar to Blake &
Gibson 1987, or Harris 1992):

δt =
�φ

max

∣∣∣∣∣1 + 1
2
|u|2 + δ2z + ε

(
V0

V

)λ
∣∣∣∣∣
. (10)

This criterion limits the maximum change in any nodal potential at each time step
to a specified constant �φ; the maximum in the denominator of (10) is taken over
all the nodal points on the bubble and structure. A value of �φ = 0.03 is used in
the computations, being a good compromise between stability and computational
efficiency. On the structure, the normal velocity is known. The matrix equation
resulting from (1) is solved iteratively to give the normal velocity on the bubble and
the potential on the structure. Then, the potential as well as the normal velocity
are known on every node for the bubble and the solid. The normal vector can
be determined easily on each triangular element. However, the normal vector on
each individual node is not yet determined and an approximation has to be found.
Invariably, there will be several triangular elements which surround a particular node
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and each has a different normal vector. A weighted average scheme, as introduced by
Zhang et al. (2001), is used to obtain such an approximation; the normal vectors of
the surrounding elements ni are averaged with the inverse of their area Si:

n =

∑
i

ni

∆i∑
i

1

∆i

. (11)

The inverse of the area is believed to be a better weighted average than the
area itself; a small element will be nearer the desired node and yield a much better
approximation than a larger element. At this point, only the normal velocity is known.
The full velocity vector at any node can be obtained with the help of the potential of
its neighbouring nodes in a similar way to the normal vector. The detailed procedure
has been described in Zhang et al. (2001); an estimation for the gradient of the
potential (or velocity) can be made from the potential of the nodes of each element i

surrounding a particular node. A weighted average scheme similar to (11) can now
be applied to find the velocity u at each node:

u =

∑
i

ui

∆i∑
i

1

∆i

. (12)

With this velocity known, the pressure anywhere on the structure can be obtained
from (3). The time-step size, imposed by (10) seems insufficient to prevent any
instabilities from appearing in the simulation (especially during the jet formation).
Therefore, a least-squares smoothing scheme is applied at every 10 time steps before
jet impact. This scheme is implemented on the potential φ as well as the coordinates
of the bubble. The values of all the neighbours (n) and the neighbours of the
neighbours (m) of a particular node (referred to as 1 in the discussion below) are used
in this scheme. A smoothed surface is then represented by a biquadratic function,

z̃′ = a1x
′2 + a2x

′y ′ + a3y
′2 + a4x

′ + a5y
′ + a6 ≡ f (x ′, y ′), (13)

where the coefficients, ai(i = 1, . . . , 6) are found by minimizing the error function,

L(a1, . . . , a6) =

m+n+1∑
j=1

[f (x ′
j , y

′
j ) − z′

j ]
2, (14)

where the sum of squares is taken over all the nodal points in the surface patch. After
aiare found, the corrected or smoothed coordinates of the central node 1 is then set
to (0, 0, a6). A more detailed explanation of this smoothing scheme can be found in
Zhang et al. (2001). If the bubble approaches the structures too closely, numerical
instabilities can also occur. Physically, a bubble cannot expand beyond the structural
surface and a thin film of fluid always exists between the surfaces of the bubble and the
structure. As our intention is not on the physics of the lubricating-like flow between
the two said surfaces, but on the primary flow features of the bubble behaviour in the
vicinity of the structure, it seem reasonable to set a minimum dimensionless distance
of say 0.05 where the bubble surface is not allowed to come closer to the surface.
In this way, the bubble can continue to evolve to further elucidate the flow physics
especially for the bulk of the main bubble surfaces not directly facing the structural
surface.



Dynamics of an underwater explosion bubble 395

3.3. The elastic mesh technique (EMT)

A feature that has shown its usefulness recently is the elastic mesh optimization
technique (EMT, see Wang et al. 2003). In many previous work (e.g. Harris 1992;
Zhang & Duncan 1994; Zhang et al. 2001), the mesh on the bubble is advanced
using the material velocity. This results in too many nodes accumulating in the jet
tip, while other areas correspondingly have a much lower node density. Zhang et al.
(2001) suggested maintaining the regularity of the mesh by adding nodes in the
sparse areas. It is found that this methodology can introduce numerical problems.
The constant node adding in the sparse region will also significantly increase the
total number of nodes, which will make the computations very slow. A new mesh
regularity control method, or EMT, was introduced by Wang et al. (2003). EMT is a
mesh regulation technique, which is based on the assumption that the segments of a
mesh are elastic (as if elastic springs were attached at each side of a triangular mesh
element). EMT can be employed in conjunction with the BEM for the simulation
of three-dimensional bubble dynamics in which problems relating to severe mesh
distortion as the bubble evolves are a common occurrence. With EMT, the mesh is
advanced not by the material velocity, but the optimum shift velocity uEMT obtained
by minimizing the total elastic energy stored in every segment of the mesh at each
time step; see (8) and (9). In doing so, the same number of nodal points is maintained
(at least up to the jet impact). Note, that if we choose uEMT = u, (9) will become the
discretized Bernoulli equation for a particle moving with the flow. Towards the later
part of the simulation, when the jet has been largely developed and just before jet
impact, the employment of the EMT method will generally not lead to a more satis-
factory mesh redistribution. We therefore switch back to updating the nodes with the
material velocity u. EMT must be applied earlier on to be most effective in ensuring a
more uniform mesh distribution. On the other hand, at this later stage without EMT,
the node density is becoming higher at the jet tip, which leads to a better resolution
of the flow physics in this region with a large velocity gradient.

3.4. Jet impact and toroidal bubble formation

When the jet impacts on the other side of the bubble, numerically a ‘hole’ must
be made to allow the fluid to go through. The issue is to determine when and
where an impact is going to take place. We must, therefore, determine which node
is situated on the jet-tip. The jet is formed in the final stages of the collapse phase.
The dimensionless oscillation time of a bubble is roughly twice the Rayleigh collapse
time for a vapour bubble or 2 × 0.915 = 1.83. However, in the presence of a structure,
the oscillation time of the bubble is slightly increased by about 5–10 % (depending
on the standoff distance). In all our simulations, no jet formation has been observed
prior to a dimensionless time of t =1.95. To calculate beyond jet impact, the following
procedures are adopted when the dimensionless time reaches 1.95. First, the Kelvin
impulse vector is computed according to K =

∫
Sbubble

φn dS. We note that the integral

is only performed on the bubble surface Sbubble. The resulting Kelvin impulse vector
will, in general, be pointing in the direction of the jet. We also identify the maximum
velocity, umax , developed at the bubble surface. A subset of nodes is then created,
consisting of all the nodes with a velocity larger than 0.5 umax , which encompasses
the nodes in the vicinity of the jet-tip. The maximum of the inner product of the
position vector x at each node of this subset and K will point to the node which is
most advanced on the jet tip (not necessarily the node with the maximum velocity).
This node will be labelled J . To illustrate this, consider a typical example of a jet
approaching the opposite side of the bubble as in figure 1, which shows an oscillating
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Figure 1. A bubble collapsing near a solid square plate.

K

m

j

a
n

I

ε1

ε2

Figure 2. The identification of the jet tip node I and the impact node J ; I and J will be
joined if a sphere around a vector pointing in the jet direction encounters a node on the
opposite bubble surface. The Kelvin impulse vector is directed downwards.

bubble located above a rigid square plate. A close-up of the jet tip is given in figure 2
with the node J as indicated. Here, the Kelvin impulse vector is directed towards the
plate. As time progresses, we have to establish if, and where, this node is going to
impact on the opposite bubble surface. In this respect, we create an artificial point
labelled a at a distance ε1 in the direction of the Kelvin impulse vector (at the end of
the arrow starting in node J in figure 2). An artificial sphere is formed around point
‘a’ as indicated in Figure 2. The radius of this sphere, ε2, is chosen to be 0.05 times
the equivalent diameter of the bubble (in this way, ε2 will always be larger than the
average mesh size). As the value of ε1 varies from a value slightly larger than ε2 to
1.0, the artificial sphere advances towards the opposite bubble interface. If a certain
node I of the opposite bubble mesh falls inside this sphere, the jet can be expected to
impact on this node. The impact criterion is specified such that if the distance between
nodes I and J is smaller than a certain value multiplied by the equivalent bubble
diameter, the jet is considered to have impacted on the opposite bubble surface. If
this impact criterion has not yet been met, we proceed with the next time step, where
the same procedure for the updated bubble surface will be repeatedly applied until



Dynamics of an underwater explosion bubble 397

Figure 3. A close-up view of the surgical cut, the vortex ring has been placed inside the
bubble (indicated above as an almost horizontal line).

the criterion is met. It might seem easier to check the distances between every node
on the bubble, but with the above procedure we seek to avoid having ‘false’ impact
nodes from the neighbours of node J (this would mean that the jet impacts on itself).
The above procedure is fully automated, in contrast to that described in Zhang et al.
(2001), where a manual intervention is required to determine the occurrence of a jet
impact.

Once the nodes I and J are identified and the impact criterion has been satisfied, a
so-called surgical-cut procedure can be performed following the descriptions of Zhang
et al. (2001). Simply joining nodes I and J will not lead to a multiconnected fluid
region, therefore nodes I and J will be deleted later in order to create a ‘hole’ where
the jet impacts. This hole has to be made along the line connecting nodes I and J .
Before deleting the two nodes, the remaining nodes will have to be reconnected. This
is done in the following manner. The number of neighbouring nodes surrounding
I and J is determined. If the two numbers are different, additional nodes will be
added to make them identical. Then, these neighbouring nodes will be ordered, for
jet and impact zone in the same systematic manner (for ease of joining). An arbitrary
neighbour node of J on the jet tip will be chosen first, this node will be called m

(see figure 2). A corresponding neighbour node of I on the impact zone will then be
chosen in such a way that it is nearest to the jet tip node, let us call this node n. Nodes
m and n will now be joined. This is done by moving both nodes m and n to a new
position which is the average of the original vector positions of nodes m and n. All the
other nodes on the jet tip will then be given a corresponding node on the impact zone
with the help of the ordering and will be joined in a similar way to that described
for nodes n and m. Finally, the nodes I and J and all the elements containing I or J

are removed and some renumbering is performed. A typical completed surgical cut,
performed on the bubble of figure 1, can be seen in figure 3.

Next, a vortex ring is placed inside the bubble, to take into account that the
fluid domain is now no longer singly-connected. The vortex ring is also indicated in
figure 3. The potential is now split into two parts, one associated with the potential
of the vortex ring (generated by the jet impact), ψ , and a smooth remainder: ϕ,

φ(x, t) = ψ(x) + ϕ(x, t). (15)
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A discontinuity in the potential can be observed across this vortex ring. To be
physically meaningful, this discontinuity must be equal to the jump in potential of
the nodes of the jet and impact zone, I and J :

Γ = φJ − φI . (16)

The parameter Γ also determines the circulation of the flow. The vortex ring is placed
entirely inside the bubble in such a way that the hole of the bubble is going through
the ring. It is not necessary for the vortex ring to be in the plane of the impact
surface. In our case, the ring is moved backwards (i.e. in the opposite direction of the
jet velocity) in such a way, that it is situated well inside the bubble. Care must be
taken in moving the ring in this way. If a node crosses over the ring, the smooth part
of the potential must be changed by a value Γ . With the help of the Biot-Savart law,
the velocity due to the vortex ring can be obtained on any node as:

uR(x, t) =
Γ

4π

∮
r(x, x′) × dl(x ′)

r3
. (17)

The integral is taken along the vortex ring; r(x, x’) is a vector from a source point x ′

on the ring to a field point x under consideration and r = ‖r‖. The ring potential at
any point x in the flow field or the bubble surface can be obtained by

ψ(x) =
Γ Θ(x)

4π
, (18)

with

Θ(x) =

∫
Sc

∂

∂n

(
1

r

)
dS (19)

as the solid angle subtended at the point x by the surface of discontinuity Sc which
extends over the vortex ring. The function Θ(x) entails a jump of 4π across Sc. Since
the bubble is found to be mainly undergoing contraction and expansion, the normal
velocity un =(∂ϕ/∂n)n +(uR · n) n is used to perform the updating (instead of the
EMT method). The vortex ring will remain unchanged, except for the occasional
slight re-positioning to keep it well inside the bubble. The new boundary conditions
on the bubble surface are (using again an Euler time-stepping scheme):

xt+δt = xt + δt un, (20)

and the remaining potential ϕ will be updated with:

ϕt+δt = ϕt + δt

(
1 − 1

2
‖uR + ∇ϕ‖2 − δ2z − ε

(
V0

V

)λ

+ un · (uR + ∇ϕ)

)
. (21)

The system of equations resulting from (1) is still solved, but it is now applicable
for the remainder potential ϕ and its normal derivative ∂ϕ/∂n. The vortex ring
also induces a potential and velocity on the structure. This velocity is not physical.
This should not be reflected in the total potential φ and therefore a compensation in
the smooth remainder potential, ϕ, should be made. The easiest way to do this is to
apply a normal velocity ∂ϕ/∂n exactly opposite to the velocity caused by the vortex
ring. This velocity will be implemented as a boundary condition on the structure in
(1), in order for the correct physics to take place. It should be noted that, strictly
speaking, the velocity of a resilient structure has to be incorporated in this boundary
condition as well. However, the velocities on the structure are much lower than the
velocities of the bubble and are therefore neglected, i.e. a zero normal velocity is
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still assumed on the structure (as if the structure were rigid). This simplification is
no longer permitted if the bubble oscillates with a frequency near the resonance
frequency of the structure.

3.5. Finite-element method (FEM) solver for the structural part and coupling
with fluid part

The structural part of the problem is simulated using the nonlinear FEM solver
PAM-CRASHTM. This commercial solver has been extensively used to simulate car
crashes. Two options are available to couple the two codes; solving all the unknowns
simultaneously (full coupling) or ‘loose’ coupling where the output of one code is
used either as a boundary condition or a loading condition for the other. Since a
‘loose’ coupling has the advantage that only minor changes have to be made to both
the structural and fluid (BEM) solver, this option has been chosen. In order to do
so, forces on the nodes are calculated with the fluid code and given as input to the
structural solver. The structural solver then calculates the displacements, which are
returned as input for the fluid BEM solver. For the simulations to be described in § 4.4,
the structural domain is first divided into a rectangular mesh consisting of one layer of
sixty 8-noded brick elements and 146 nodes. The structure is assumed to behave as an
elastic–plastic material (for more details, see the PAM-CRASHTM Reference Manual
1997). An explicit time-integration scheme is used by the PAM-CRASHTM solver to
integrate the nonlinear equations of motion. On the boundary of the structure, proper
load boundary conditions are given using the fluid solver. In order to do so, a second
mesh consisting of sixty 4-noded shell elements (type: null material) is placed at the
bottom of the mesh with the brick elements. These shell elements take on the forces
supplied by the fluid solver. The displacements at the structure are then fed back
to the fluid solver. The fluid solver uses a triangular mesh, created by dividing each
of the 4-noded shells of the structural solver into two separate triangular shells. The
two meshes, fluid mesh and structural shell mesh, need not be the same, therefore an
interpolation function transfers back and forth the required parameters/information
on the two meshes. In our calculations, however, the nodes are chosen to be identical
for both meshes for ease of implementation. The load vector on the fluid mesh lying
on the structure is obtained by first calculating the pressure on the structure with (3).
This nodal pressure is then multiplied by the appropriate area of the surrounding
elements of the respective node to arrive at the load vector.

An interface routine alternately calls the BEM and FEM solvers. The time steps of
the two codes can be, and are usually, different. Therefore, a leapfrog time-advancing
scheme is selected in the present work to cope with the different time steps of the fluid
and solid codes. After each run of the BEM solver, it returns the time tf pertaining
to the fluid code. Then the FEM solver is called upon and returns the time ts when
it is ready for the next computation step. If ts < tf , the FEM solver will be called
again until ts > tf . There is no need to include an added mass term in the mass-matrix
of the structural solver, since the calculated pressure has automatically taken into
consideration all the fluid-induced forces.

4. Computational results and discussions
4.1. Preliminaries

Though the numerical code can be simply called upon to simulate large-scale
explosions such as a TNT charge of 500 kg, experiments are not so easily available to
verify the calculations for these extreme cases. Even smaller-scale experiments are hard
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0.5 m

Figure 4. Explosion under free-field conditions: experimental results of a 55 g explosive
charge; from left to right the bubble shape at: t =1, 7, 50, 85, 93, 94, 95 and t = 96 ms. The
second minimum volume occurs at t = 94 ms.

0.5 m

Figure 5. Explosion in a free-field configuration: numerical results of a 55 g explosive charge;
from left to right at t = 0, 7.5, 50.2, 80.1, 89.1, 90.05, 90.61 and t = 91.58 ms. The second
minimum volume occurs at t =90.05 ms.

to come by. Therefore, a series of (controlled) small-scale tests have been performed
with charges varying from 10 to 55 g (Hexocire explosive charges). First, several free-
field tests are carried out in the absence of any nearby structures. Then, a charge will
be placed near a vertical rigid wall. A charge under a horizontal resilient plate will
be considered next. Finally, a test case will be shown, where the charge is placed at
a slightly larger distance from a vertical rigid wall than in the previous arrangement.

4.2. Explosions under free-field conditions

The first series of experiments described are the free-field explosions. This means that
there are no immediate boundaries (structures or free surfaces) near to the explosion
bubble. Three charges of 10 g, 35 g and 55 g are used, placed at a depth of 3.5 m. The
oscillating times and maximum bubble radii are different for the three bubbles, but
their global behaviour is the same for the experiments as well as for the numerics.
The experimental oscillation times for the three charges are 53, 82 and 94 ms for 10,
35 and 55 g, respectively. At roughly half of the oscillation time, the bubble reaches its
maximum size. Experimental and numerical results for the three cases resemble each
other qualitatively, therefore only a typical set of the results is shown. In figures 4
and 5, the bubble shapes for experiment and numerical simulations are shown,
respectively, for a charge of 55 g. Note that for the experiments, the image of the
bubble is the result of reflected light from the light sources in the set-up. The explosion
happens at t =0 ms. The white vertical lines visible in figure 4 are the supporting wires
required to keep the charge in place before the explosion, these wires have also been
placed horizontally in the experiments, to see if there is any influence on the bubble
behaviour. No notable influence has been found. The bubble grows to its maximum
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Figure 6. Bubble shape before jet impact for a 10 g explosive in a free-field configuration.
The velocity vectors are also indicated.

Figure 7. Bubble shape with jet impact at t = 51.0ms, for a 10 g explosive in a free-field
configuration.

radius measuring 56 cm at about t = 50 ms. As the nearest wall of the pond is at a
distance of 3.0 m, it is reckoned that the influence from the walls of the pond and the
free surface can be considered negligible. Furthermore, the walls are constructed with
a step-like structure to minimize any coherent reflection. A jet can be observed to
form in the last stages of the bubble collapse for the numerics. This jet is caused by
the influence of gravity and develops at about t = 85 ms. No jet can be seen in this set
of experimental results owing partly to some fuzziness of the pictures as well as the
opaque bubble containing the dark-coloured combustion/explosion products which
prevents us from clearly observing the jet development within the bubble. However,
in other pictures some protrusion can be seen clearly on the top surface of the bubble
near the bubble’s minimum volume. Closer examination of figures similar to figure 4
at the later stages of the bubble evolution reveals the dark-coloured combustion
products moving inwards with the jet from below and then being projected out of
the topside of the bubble. This serves as ‘indirect’ evidence of the existence of the jet.
In addition, the multi-directional ‘spikes’ extending from the dark coloured image of
the spheroid bubble of the said later times may suggest the presence of solid particles
arising from the explosion (probably un-burnt parts) which have made their way
through the gaseous medium and into the water medium. Certainly, the particles,
have vastly different inertia from the gaseous bubble and hence it is perhaps not
unexpected that their resultant different momentum has given rise to this observed
behaviour not captured numerically. Similar spikes have been observed in explosion
bubbles by Tomita et al. (1994). They do not seem to appear in bubbles generated by
different means (see for example Brujan et al. 2001a, b for laser generated bubbles).
The minimum volume is reached at about t = 90 ms numerically and t = 94 ms
experimentally. Figures 6 to 9 show the simulation of a 10 g charge just before
and after jet impact; the event takes place at t = 51.0 ms numerically. The velocity
vectors and the vortex ring are also shown. In figure 8, the bubble is depicted from
a different angle (top view). In figure 9, the bubble is shown after it has reached its
minimum volume, the bubble starts to re-expand. In figure 10, the volume of the
bubble as a function of time is shown for both experimental and numerical results
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Figure 8. Top view of the toroidal bubble, with vortex ring and hole in the middle owing to
jet impact at t = 51.0ms, for a 10 g explosive in a free-field configuration.

Figure 9. After the minimum volume, the bubble starts growing again, for a 10 g explosive
in a free-field configuration.
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Figure 10. The evolution of the bubble volume, experimentally and numerically, for
explosive charges of 10, 35 and 55 g under free-field conditions.



Dynamics of an underwater explosion bubble 403

0

1

2

3

80 81 82 83 84

Time (ms) 

P
re

ss
ur

e 
(M

P
a)

P1

P3

P5

Figure 11. Experimental pressure profile around the second pressure peak (from 80 to
84ms) for the explosive charge of 35 g at sensor positions P1, P3 and P5.

for the three charges. The experimental volume has been obtained by digitizing the
image of the bubble and using the contrast of the light intensity level to determine
the outline of the bubble for the diametrical plane (only the left-hand and right-
hand boundaries of the bubble were considered, since the bottom boundary cannot
be clearly distinguished). From there, an equivalent bubble diameter is obtained to
produce the volume for comparison to the numerics. Of course, towards the final stages
of the collapse, this will introduce increasing uncertainty in the experimental bubble
volume, since the bubble is probably toroidal. Nevertheless, the broad comparison
shows that the experimental volume is larger than the simulation and that the
oscillation period (defined as the period between initiation and next minimum volume)
is also slightly larger for the experiment with 55 g (91 vs. 94 ms). The observed trend
can also be seen for the other charges of 10 g and 35 g (see figure 10). As could be
expected, a larger charge will produce a larger maximum volume of the bubble; this
volume is proportional to the charge weight (owing to energy considerations). The
oscillation time is proportional to the maximum radius of the bubble (or to the cubic
root of the charge weight) in both experiments and numerics. A possible explanation
for the larger experimental maximum volumes and oscillation times could be that the
calculations are based on TNT equivalent charges; the TNT equivalent of Hexocire
in weight has been assumed to be 1.0. However, the equivalence is probably slightly
larger, which will result in a larger bubble size and a larger oscillation period. This
trend is reflected correctly with respect to the experimental data.

Pressure profiles were also measured as a function of time. For this purpose, some
pressure sensors were placed in the flow at some distance from the charge. A sensor
labelled P1 is placed beside the charge, at the same initial depth as the charge and
at a horizontal distance of 0.7 m away from it. Two other pressure sensors were
placed on top and below this sensor; P3 is at a horizontal distance of 0.7 m and a
vertical distance of 0.71 m below the charge while P5 is at a horizontal distance of
0.7 m and a vertical distance of 1.095 m above the charge. A typical example of a
pressure profile is shown in figure 11, where the experimentally measured pressure for
times between 80 ms and 86 ms is shown for the three sensors for a charge of 35 g.
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Figure 12. Numerical pressure profile at sensor positions P1, P3 and P5 for the explosive
charge of 35 g; the numerical jet impact occurs at t = 77.2ms.

This time span contains the jet impact and subsequent minimum bubble volume. The
maximum pressure of P1 is the highest at about 3.3 MPa. This is as expected, since
its location is nearest to the charge. This maximum occurs at about 82.5 ms. Sensor
P3 gives a maximum pressure of 1.9 MPa and sensor P5 of 2.2 MPa. There is a time
delay of about 0.5 ms between the maximum of sensor P1 and the other sensors.
This is probably because the velocity of sound is finite and thus the high pressure
will not be felt at the same instant at different places in the fluid. This is in contrast
to the numerical method, which is supposed to be incompressible and therefore the
pressure will be ‘felt’ immediately anywhere in the fluid domain. In figure 12, the
numerical results are shown for pressure sensors placed at the same location as in
the experiments. The maximum pressure of sensor P1 is 3.1 MPa, which is slightly
lower than the observed experimental value. It occurs at 77.5 ms, which is earlier
than recorded by the experiment. This can be expected since the numerical bubble
oscillates slightly faster and will thus reach its maximum pressure earlier. The sensors
P3 and P5 reach a maximum of 2.0 and 1.8 MPa, respectively, at about the same
instant, the reason for this is explained above. Similar pressure profiles have been
observed for the other charge weights (not shown here). The charge of 55 g gives the
largest bubble size and tends to present the clearest experimental pictures. Therefore,
for all other experiments described below, only the charge of 55 g will be considered.

4.3. Explosion near a rigid vertical plate

Next, a more complicated case is studied. A charge of 55 g is placed near a vertical
rigid plate at a depth of 3.5 m. The plate has a dimension of 1.5 m × 1.5 m and is made
of hardened steel. The thickness of the plate (5 cm) ensures that the plate remains
essentially rigid. The standoff distance is 0.4 m, or 0.74 times the maximum bubble
radius; this is found to be sufficiently close to attract the bubble towards the plate.
In figures 13 to 16, the experimental and numerical bubble shapes can be seen. The
solid plate is situated to the left-hand side of the bubble. The bubble starts expanding,
but before it reaches its maximum size, it is already pushing against the wall. The
bubble expands onto the wall considerably in this phase. When it collapses, it first
takes on an urn-like shape and then develops a somewhat horizontal jet directed
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0.5m

0.4 m

Figure 13. Explosion near a vertical rigid plate of a 55 g explosive charge. Experimental
bubble shapes at t < 0, t = 0, 8, 50 and t = 78 ms.

1.5 m

Figure 14. As for figure 13, numerical bubble shapes at t = 0.0, 6.7, 50.4 and t = 74.8 ms.

0.5 m

Figure 15. As for figure 13, experimental bubble shapes at t = 82, 91, 94, 97, 100 and
t = 104ms.

Figure 16. As for figure 13, numerical bubble shapes at t = 85.8, 89.4, 92.2, 93.2, 97.5
and 99.5ms.
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towards the plate (in the free-field cases the jet was directed upwards). It may be
noted that the jet assumes a direction tilted slightly upwards during the initial phase
of the toroidal shape which can be attributed to the combined effect of buoyancy
(creating an upwards jet) and attraction to the wall (creating a jet directed towards
the wall). The jet direction then seems to shift more and more perpendicular to the
wall, probably indicating that the attraction effect of the wall becomes greater and
greater as the centroid of the bubble moves increasingly closer to the plate. The
numerical bubble shapes correspond very well with the observed experimental data.
Again, in the last stages of the collapse, the experimental data become very fuzzy and
no jet formation can be directly observed. In the experiment, the oscillation time is
100 ms, while in the simulation it is 97.5 ms.

4.4. Explosion below a resilient horizontal plate

The subject of oscillating bubbles near a resilient structure has not been studied exten-
sively in literature. Brujan et al. (2001a, b) present some experimental data concerning
millimetre sized bubbles near a gel-like material. Klaseboer & Khoo (2004) have
subsequently carried out a numerical study on the same subject for an axisymmetric
bubble configuration. An approach closely resembling the work of Duncan,
Milligan & Zhang (1996) will be followed in this work. They simulated the interaction
between a bubble and a compliant structure using a coupling between a boundary-
element code for the fluid and a finite-element code for the structure. This, among
others, was used to simulate the experimental data of Shima et al. (1989) of a bubble
near a solid wall with an elastic coating. More experimental results on this subject
were presented in Tomita & Kodama (2003).

In the next case, an explosive of 55 g is placed under a sufficiently thin circular
resilient steel plate with a diameter of 0.6 m and thickness of only 2 mm. The circular
plate is placed horizontally with fluid loading on the bottom side (the other side is
air-backed). The steel plate has the following mechanical properties: the density is
7800 kgm−3, the shear modulus is 80.7 GPa, the tangent modulus is 0.4038 GPa, the
bulk modulus is 175 Gpa, the yield stress is 240 MPa, Young’s modulus is 210 GPa
and the Poisson ratio is 0.3. This thickness of 2 mm is thin enough to allow relatively
large deformations of the plate to occur. The plate has been fixed at its boundaries
for all six degrees of freedom. The standoff distance has been chosen to be 1.2 m
below the plate (or 2.2 times the maximum bubble radius of 0.54 m). The distance
between the explosive charge and the floor of the pond is 3.5 m (the charge depth
is also 3.5 m). In the experiment, several displacement sensors are used to record the
deformation of the steel plate. Since the standoff distance is larger than the bubble
radius, the bubble behaves, to some extent, like a free-field bubble. The jet is directed
upwards and towards the plate. The simulation is stopped once the results of the
PAM-CRASHTM code indicate very little or no change anymore, which is taken to
be the final deformation of the structure.

Both the simulation and experiment can be seen in figure 17 where the initial
maximum bubble size and subsequent minimum bubble size are shown. The extent of
the plate is rather small compared to the maximum bubble radius. In figure 18, the
deformation of the centre of the plate is shown as a function of time. Both curves,
experimentally and numerically, start with an initial deformation of zero. Note that the
deformation shows minimal changes at t ≈ 100 ms and beyond. Experimentally, the
movement of the supporting structure holding the plate has been properly accounted
for to arrive at the displacement of the plate centre relative to the (fixed) edge. The
centre of the plate moves away from the bubble very rapidly (positive displacement)



Dynamics of an underwater explosion bubble 407

x x x

z z z

Figure 17. Explosion below a resilient plate for a 55 g explosive charge: (a) experimental
and (b) numerical results; from left to right at t = 0ms (experimental and numerical), 45ms
(experimental and numerical), 91ms (experimental) and 90ms (numerical).
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Figure 18. Displacement z of the centre of the plate relative to its edge as a function of time;
numerical (thick line) and experimental (thin line). A positive displacement means that the
plate is moving away from the bubble.

immediately after the explosion. In only a few milliseconds, it moves to a displacement
of 30 mm. It then quickly reverses direction and moves towards the bubble within
about 10 ms. This can partly be explained by the fact that the bubble pressure very
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Figure 19. Numerical (solid lines) and experimental (symbols) pressure profile for the sensors
P1 (highest peak magnitude), P3 (moderate peak magnitude) and P5 (lowest peak magnitude).

soon becomes lower than the surrounding pressure, thus creating a suction effect
exerted on the plate. The plate then stays a relatively long time, for about 80 ms,
in this position amidst some limited transient movement observed. When the bubble
finally collapses, the pressure caused by the ensuing jet and the compressed gas
inside the bubble eventually leads to the permanent (and plastic) deformation of the
plate; this deformation of 40 mm is larger than that observed just after the explosion
(about 20 mm, see figure 18). The numerical results are similar in behaviour. The
experimental deformation is larger than the numerics: the permanent deformation
from the numerics is 34 mm compared to the experiment at 40 mm. One possible
reason behind the noted difference is: the neglect of the influence of the shock wave
in the numerical model which is estimated to contribute an error of about 10 %
(see below on the discussion on the pressure results). The supporting structure is not
included in the numerical model; it could give rise to a larger pressure on the plate.
All these will lead to a lower numerical net force acting on the plate structure. It is
therefore not too surprising to observe a discrepancy of about 15 % larger in the final
deformation of the plate centre in the experiment. From Amabili & Kwak (1996), the
fundamental eigenfrequency of the fluid-loaded circular plate is 97 Hz. This frequency
is much higher than the typical frequency of the bubble (around 10 Hz).

Further examination of some pressure measurements from the time of 89 ms to
93 ms thereby encompassing the second pressure peak at around 91 ms for the experi-
ment is shown in figure 19. The pressure sensor P1, is placed at a horizontal distance
of 70 cm from the initial position of the explosive charge. Sensor P3 is placed 30 cm
above sensor P1 and sensor P5 is placed 50 cm below sensor P1. The numerical
pressure corresponds reasonably well with that observed in the experiment: the
maximum peak for sensor P1 is 3.7 MPa (experiment) and 3.2 MPa (numerical); for
sensor P3 3.1 MPa (experiment) versus 3.2 (numerical); for sensor P5, 2.2 MPa is
found for experiment and 2.3 MPa for the simulation. The two numerical curves P1
and P3 are almost indistinguishable. Experimentally, the pressure immediately after
the explosion registers a very large value. For example, a pressure sensor at the centre
of the plate measures a peak pressure close to 30 MPa, which is attributed to the
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Figure 20. The position of the upper bubble surface, the lower bubble surface and centre of
mass as a function of time for the case of figure 17; experimental: triangles (upper bubble
surface), circles (centre of mass) and crosses (lower bubble surface); numerical: thin continuous
line (lower), medium continuous line (upper) and thick continuous line (centre of mass).

shock wave. It very rapidly decreases to 5 MPa in only about 0.1 ms and further
decreases to 1 MPa within 0.5 ms. An estimation of the integral of the pressure profile
with time from 30 to about 10 MPa (the latter is associated with the bubble pressure
assuming dominance as implied from the numerics) gives us a value of 5. A similar
integral carried out for the numerical results from a maximum value of about 10
down to 0.1 MPa gives a value of about 30. Since there is another or second bubble
pulse (associated with the jet impact) with a fairly similar pressure profile, this would
combine to a total integral value of 60 owing to the bubble dynamics. The influence
of the shock wave in the final deformation of the plate is thus estimated to be about
10 %, based broadly on the ratio of the pressure integrals associated with the shock
to the bubble dynamics. It is not possible to distinguish the pressure induced by the
shock from that generated by the bubble in the experimental results. Therefore, no
comparison is shown here between the experimental and numerical pressures at those
times just after the explosion.

An interesting feature is also the position of the bubble as a function of time. In
figure 20, the position of the upper bubble surface, the lower bubble surface and the
centre of mass (average of the above) are plotted for both experiment and numerics.
The upper and lower bubble surfaces show a typical oscillation due to the volume
fluctuation of the bubble. The centre of mass is rising sharply when the bubble reaches
its second minimum volume around 90 ms. At t =96 ms, the experimental centre of
mass has reached a value of 0.28 m; in the numerical results, it reaches a slightly lower
value of 0.25 m. In the experiments, the bubble then continues to oscillate, but with a
lower amplitude due to energy losses. It reaches a third minimum volume at t = 165 ms.
Since in the numerical results, no energy losses are taken into account, the numerical
bubble rebounds with a relatively larger intensity (in future works, this energy loss
should be taken into consideration). However, since the main ‘loading’ due to the
bubble occurs around the second minimum volume (as shown in the pressure plots
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Figure 21. Explosion near a vertical rigid plate of a 55 g explosive charge at a stand-off
distance of 0.6m. Experimental results at t =0, 8, 48 and 86ms.

1.5 m

Figure 22. As for figure 21, numerical results at t = 0, 8.2, 44.6 and 83.4ms.

of figure 19), the uncertainty/error associated with the numerical displacement of the
plate should not be significant. Another illustration of the energy losses encountered
in the experiments can be found in figure 19, where the experimental pressure profiles
are non-symmetric with respect to the peak value. In other words, the pressure drops
much faster after the peak than it rises before the peak. This is in contrast to the
numerical results, where the pressure pulse is symmetric around the peak value. It
can be seen that a similar bubble produced under free-field conditions, as in figure 4,
gives rise to an almost identical plot as shown in figure 20 regarding the positions
of the upper and lower bubble surface and centre of mass (not shown here). This
also indicates that the bubble behaves as a free-field bubble, which is attributed to
the sufficiently large distance between the plate and the bubble. The bubble moves
mainly under the influence of gravity in this case.

4.5. Explosion at a larger standoff distance

The last case under consideration is for a charge of 55 g placed beside a vertical
rigid plate at a relatively large standoff distance of 0.6 m (or 1.1 times the maximum
bubble radius) and a depth of 3.5 m. The same rigid plate as in § 4.3 is used. Since the
standoff distance is larger than that found in § 4.3, the influence of gravity can be seen
more clearly. In figures 21 and 23, the experimental results are presented with the
rigid wall on the left-hand side of the bubble. The numerical results at comparable
times are shown in figures 22 and 24. The bubble grows until it reaches its maximum
size at about t =48 ms experimentally. A flattening of the bubble surface can be
observed, where it is nearest to the plate. It is also found that the experiment takes
a slightly longer time to reach a similar level of bubble evolution compared to the
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jet pearcing
      through

Figure 23. As for figure 21, experimental results at t = 90, 92, 94, 95 and 96ms.

Figure 24. As for figure 21, numerical results at t = 88.5, 90.10, 90.93 and 91.7ms.

numerics. In the collapse phase, the bubble initially assumes an egg shape. Then, a jet
is seen developing at the extreme end of the bubble, furthest away from the wall in
the simulation. This jet is likely to make an impact on the top right-hand surface of
the bubble, as depicted in the last image of figure 23. In the experiment, the explosive
products can be seen to ‘pierce’ through the top section of the bubble obliquely and
project into the water medium above the bubble. Had the standoff distance been
chosen to be larger, say twice the maximum bubble radius, then gravity would have
dominated the problem and similar situations as discussed in § 4.2 would appear with
a gravity jet pointing upwards fairly symmetrically (see also Blake & Gibson 1987).
Overall, the comparison between experiment and simulation has been fair, at least
for the shapes of the bubble development.

5. Conclusions
The present paper shows the results of a comparison between experiment and

a coupled BEM-FEM simulation of three-dimensional interactions between an
underwater explosion bubble and a nearby submerged structure in various geometrical
arrangements. This is one of the few occasions where controlled experiments on an
underwater explosion with fairly large charges ranging from 10 g to 55 g of Hexocire
were used and data made available in the literature. The fluid domain is calculated
with the BEM method, while the structure domain is discretized by FEM. The BEM
and FEM share the same displacement and force on the common boundary between
structure and fluid (the wetted surface). The present approach can handle the nonlinear
property of the structure, such as large plastic deformation. The comparisons have
been fair, which also serves to validate the present method.
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